STATE OF THE ART PAPER
Cardiac complications of arteriovenous access: a narrative review from a multidisciplinary team perspective
More details
Hide details
1
Department of Vascular Surgery, General University Hospital of Patras, Patras, Greece
2
Department of Surgery, General University Hospital of Patras, Patras, Greece
3
Department of Surgery, General Hospital of Eastern Achaia, Unit of Aigio, Aigio, Greece
4
Department of Cardiothoracic and Vascular Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
5
Department of Nephrology and Kidney Transplantation, General University Hospital of Patras, Patras, Greece
6
Department of Cardiology, General University Hospital of Patras, Patras, Greece
7
Department of Interventional Radiology, General University Hospital of Patras, Patras, Greece
8
Department of Cardiac Surgery, Hippokratio General Hospital of Athens, Athens, Greece
9
Department of Transplantation Surgery, Department of Surgery General University Hospital of Patras, Patras, Greece
Submission date: 2024-11-01
Final revision date: 2024-11-16
Acceptance date: 2024-12-04
Publication date: 2024-12-31
Arch Med Sci Atheroscler Dis 2024;9(1):217-225
KEYWORDS
TOPICS
ABSTRACT
Although cardiovascular disease is common among hemodialysis patients, arteriovenous access creation has been invariably implicated in the evolution of adverse cardiac outcomes or deterioration of pre-existing cardiovascular disease. In most cases, these effects are subclinical but with potential underlying echocardiographic findings. Compared with grafts, arteriovenous fistulas are implicated more often, due to the progressively increased flow from the continuous dilatation of the venous outflow tract in the long term. The increasing flow is in the majority of patients well tolerated by cardiac adaptive alterations. However, the clinical impact is based on the balance between the amount of flow volume and the patient’s cardiac reserves. Having extensively reviewed the existing English literature, we present the pathophysiology and the different types of cardiovascular complications, the indications, types, and efficacy of flow-restrictive procedures in the context of a high-flow AVF, as well as some precautions and considerations for AVF creation in high-risk patients.
REFERENCES (59)
1.
Basile C, Lomonte C. The complex relationship among arteriovenous access, heart and circulation [editorial]. Semin Dial 2018; 31: 15-20.
2.
Alkhouli M, Sandhu P, Boobes K, Hatahet K, Raza F, Boobes Y. Cardiac complications of arteriovenous fistulas in patients with end-stage renal disease. Nefrologia 2015; 35: 234-45.
3.
Bertog SC, Sobotka NA, Sobotka PA, et al. Percutaneous creation of a central iliac arteriovenous anastomosis for the treatment of arterial hypertension. Curr Hypertens Rep 2018; 20: 18. Erratum in: Curr Hypertens Rep 2018; 20: 27.
4.
Aala A, Sharif S, Parikh L, Gordon PC, Hu SL. High-output cardiac failure and coronary steal with an arteriovenous fistula. Am J Kidney Dis 2018; 71: 896-903.
5.
Ori Y, Korzets A, Katz M, Perek Y, Zahavi I, Gafter U. Haemodialysis arteriovenous access: a prospective haemodynamic evaluation. Nephrol Dial Transplant 1996; 11: 94-7.
6.
Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23: 282-7.
7.
Tayebi P, Ziaie N, Golshan S, Bijani A, Mahmoudlou F. Hemodialysis patients with high-flow arteriovenous fistulas: an evaluation of the impact on cardiac function. Vasc Specialist Int 2024; 40: 7.
8.
Roca-Tey R. Permanent arteriovenous fistula or catheter dialysis for heart failure patients. J Vasc Access 2016; 17 Suppl 1: S23-9.
9.
Lee DY, Chen T, Huang WC, et al. Systemic vascular resistance predicts high-output cardiac failure in patients with high-flow arteriovenous fistula. ESC Heart Fail 2024; 11: 189-97.
10.
Zamboli P, Lucà S, Borrelli S, et al. High-flow arteriovenous fistula and heart failure: could the indexation of blood flow rate and echocardiography have a role in the identification of patients at higher risk? J Nephrol 2018; 31: 975-83.
11.
Saleh MA, El Kilany WM, Keddis VW, El Said TW. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients. Egypt Heart J 2018; 70: 337-41.
12.
Stoumpos S, Rankin A, Hall Barrientos P, et al. Interrogating the haemodynamic effects of haemodialysis arteriovenous fistula on cardiac structure and function. Sci Rep 2021; 11: 18102.
13.
Papasotiriou M, Xanthopoulou I, Ntrinias T, et al. Impact of arteriovenous fistula on cardiac size and function in kidney transplant recipients: a retrospective evaluation of 5-year echocardiographic outcome. Exp Clin Transplant 2019; 17: 619-26.
14.
Choi YS, Lee IJ, An JN, et al. High-flow arteriovenous fistula and myocardial fibrosis in hemodialysis patients with non-contrast cardiac magnetic resonance imaging. Front Cardiovasc Med 2022; 9: 922593.
15.
Bolignano D, Rastelli S, Agarwal R, et al. Pulmonary hypertension in CKD. Am J Kidney Dis 2013; 61: 612-22. Erratum in: Am J Kidney Dis 2015; 65: 524.
16.
Paneni F, Gregori M, Ciavarella GM, et al. Right ventricular dysfunction in patients with end-stage renal disease. Am J Nephrol 2010; 32: 432-8.
17.
Abassi Z, Nakhoul F, Khankin E, Reisner SA, Yigla M. Pulmonary hypertension in chronic dialysis patients with arteriovenous fistula: pathogenesis and therapeutic prospective. Curr Opin Nephrol Hypertens 2006; 15: 353-60.
18.
Nakhoul F, Yigla M, Gilman R, Reisner SA, Abassi Z. The pathogenesis of pulmonary hypertension in haemodialysis patients via arterio-venous access. Nephrol Dial Transplant 2005; 20: 1686-92.
19.
Yilmaz S, Yetim M, Yilmaz BK, et al. High hemodialysis vascular access flow and impaired right ventricular function in chronic hemodialysis patients. Indian J Nephrol 2016; 26: 352-6.
20.
Said K, Hassan M, Baligh E, Zayed B, Sorour K. Ventricular function in patients with end-stage renal disease starting dialysis therapy: a tissue Doppler imaging study. Echocardiography 2012; 29: 1054-9.
21.
Peng W, Li Z, Xu H, et al. Assessment of right ventricular dysfunction in end-stage renal disease patients on maintenance haemodialysis by cardiac magnetic resonance imaging. Eur J Radiol 2018; 102: 89-94.
22.
Di Lullo L, Floccari F, Polito P. Right ventricular diastolic function in dialysis patients could be affected by vascular access. Nephron Clin Pract 2011; 118: c257-61.
23.
Zhao LJ, Huang SM, Liang T, Tang H. Pulmonary hypertension and right ventricular dysfunction in hemodialysis patients. Eur Rev Med Pharmacol Sci 2014; 18: 3267-73.
24.
Jaques DA, Davenport A. High-flow arteriovenous fistula is not associated with increased extracellular volume or right ventricular dysfunction in haemodialysis patients. Nephrol Dial Transplant 2021; 36: 536-43.
25.
Papafaklis MI, Naka KK, Papamichael ND, et al. The impact of renal function on the long-term clinical course of patients who underwent percutaneous coronary intervention. Catheter Cardiovasc Interv 2007; 69: 189-97.
26.
Savage MT, Ferro CJ, Sassano A, Tomson CR. The impact of arteriovenous fistula formation on central hemodynamic pressures in chronic renal failure patients: a prospective study. Am J Kidney Dis 2002; 40: 753-9.
27.
Gaudino M, Serricchio M, Luciani N, et al. Risks of using internal thoracic artery grafts in patients in chronic hemodialysis via upper extremity arteriovenous fistula. Circulation 2003; 107: 2653-5.
28.
Ahn S, Han A, Kim SY, et al. The incidence and risk factors of coronary steal after ipsilateral AVF in patients with a coronary artery bypass graft. J Vasc Access 2017; 18: 290-4.
29.
Kaze FF, Kengne AP, Djalloh AM, et al. Pattern and correlates of cardiac lesions in a group of sub-Saharan African patients on maintenance hemodialysis. Pan Afr Med J 2014; 17: 3.
30.
Ennezat PV, Maréchaux S, Pibarot P. From excessive high-flow, high-gradient to paradoxical low-flow, low-gradient aortic valve stenosis: hemodialysis arteriovenous fistula model. Cardiology 2010; 116: 70-2.
31.
Alkhouli M, Alasfar S, Samuels LA. Valvular heart disease and dialysis access: a case of cardiac decompensation after fistula creation. J Vasc Access 2013; 14: 96.
32.
Ogugua FM, Mathew RO, Ternacle J, Rodin H, Pibarot P, Shroff GR. Impact of arteriovenous fistula on flow states in the evaluation of aortic stenosis among ESKD patients on dialysis. Echocardiography 2024; 41: e15728.
33.
Dixon BS, Novak L, Fangman J. Hemodialysis vascular access survival: upper-arm native arteriovenous fistula. Am J Kidney Dis 2002; 39: 92-101.
34.
Blanchard V, Courtellemont C, Cariou E, et al. Cardiac impact of arteriovenous fistulas: what tools to assess? Heart Vessels 2020; 35: 1583-93.
35.
Schmidli J, Widmer MK, Basile C, et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2018; 55: 757-818.
36.
Lok CE, Huber TS, Lee T, et al.; KDOQI Vascular Access Guideline Work Group. KDOQI clinical practice guideline for vascular access: 2019 update. Am J Kidney Dis 2020; 75 (4 suppl 2): S1-164.
37.
Papadoulas SI, Kouri N, Tsimpoukis A, et al. Treatment options for dialysis access steal syndrome. Kardiochir Torakochir Pol 2022; 19: 141-5.
38.
Turner AD, Chen M, Dahl N, et al. Intraoperative ultrasound guidance for banding of an arteriovenous fistula causing high cardiac output heart failure. Ann Vasc Surg 2020; 66: 665.e5-5.e8.
39.
Papadoulas S, Mulita F, Theodoropoulou T, Dousdampanis P. Short interposition grafting for dialysis-access steal syndrome treatment. BMJ Case Rep 2022; 15: e248446.
40.
Papadoulas SI, Theodoropoulou T, Kouri N, et al. Treatment of dialysis access steal syndrome with concomitant vascular access aneurysms. Vasc Specialist Int 2022; 38: 11.
41.
Balamuthusamy S, Jalandhara N, Subramanian A, Mohanaselvan A. Flow reduction in high-flow arteriovenous fistulas improve cardiovascular parameters and decreases need for hospitalization. Hemodial Int 2016; 20: 362-8.
42.
Gkotsis G, Jennings WC, Malik J, Mallios A, Taubman K. Treatment of high flow arteriovenous fistulas after successful renal transplant using a simple precision banding technique. Ann Vasc Surg 2016; 31: 85-90.
43.
Kanno T, Kamijo Y, Hashimoto K, Kanno Y. Outcomes of blood flow suppression methods of treating high flow access in hemodialysis patients with arteriovenous fistula. J Vasc Access 2015; 16 (10 suppl): 28-33.
44.
Alqassieh A, Dennis PB, Mehta V, et al. MILLER banding procedure for treatment of dialysis access-related steal syndrome, pulmonary hypertension, and heart failure. Am Surg 2023; 89: 1376-80.
45.
Vaes RH, Wouda R, van Loon M, van Hoek F, Tordoir JH, Scheltinga MR. Effectiveness of surgical banding for high flow in brachial artery-based hemodialysis vascular access. J Vasc Surg 2015; 61: 762-6.
46.
Bourquelot P, Gaudric J, Turmel-Rodrigues L, Franco G, Van Laere O, Raynaud A. Proximal radial artery ligation (PRAL) for reduction of flow in autogenous radial cephalic accesses for haemodialysis. Eur J Vasc Endovasc Surg 2010; 40: 94-9.
47.
Maresca B, Filice FB, Orlando S, et al. Early echocardiographic modifications after flow reduction by proximal radial artery ligation in patients with high-output heart failure due to high-flow forearm arteriovenous fistula J Vasc Access 2020; 21: 753-9.
48.
Oe K, Araki T, Katano K, et al. Impact of inflow reduction of arteriovenous fistula on systemic hemodynamics in a patient with high-output heart failure during hemodialysis: a case report. J Cardiol Cases 2009; 1: e98-101.
49.
Chemla ES, Morsy M, Anderson L, Whitemore A. Inflow reduction by distalization of anastomosis treats efficiently high-inflow high-cardiac output vascular access for hemodialysis. Semin Dial 2007; 20: 68-72.
50.
Vaes RH, van Loon M, Vaes SM, Cuypers P, Tordoir JH, Scheltinga MR. One-year efficacy of the RUDI technique for flow reduction in high-flow autologous brachial artery-based hemodialysis vascular access. J Vasc Access 2015; 16 Suppl 9: S96-101.
51.
Loh TM, Bennett ME, Peden EK. Revision using distal inflow is a safe and effective treatment for ischemic steal syndrome and pathologic high flow after access creation. J Vasc Surg 2016; 63: 441-4.
52.
Parmar CD, Chieng G, Abraham KA, Kumar S, Torella F. Revision using distal inflow for treatment of heart failure secondary to arteriovenous fistula for hemodialysis. J Vasc Access 2009; 10: 62-3.
53.
Gerrickens MWM, Vaes RHD, Govaert B, et al. Three year patency and recurrence rates of revision using distal inflow with a venous interposition graft for high flow brachial artery based arteriovenous fistula. Eur J Vasc Endovasc Surg 2018; 55: 874-81.
54.
Bontinis A, Bontinis V, Koutsoumpelis A, et al. A systematic review aggregated data and individual participant data meta-analysis of percutaneous endovascular arteriovenous fistula. J Vasc Surg 2023; 77: 1252-61.e3.
55.
Kitrou PM, Balta L, Papachristou E, et al. Percutaneous arteriovenous fistula creation with the WavelinQ 4-French EndoAVF system: a single-center retrospective analysis of 30 patients. J Vasc Interv Radiol 2022; 33: 33-40.
56.
Beathard GA, Litchfield T, Jennings WC. Two-year cumulative patency of endovascular arteriovenous fistula J Vasc Access 2020; 21: 350-6.
57.
Harika G, Mallios A, Allouache M, et al. Comparison of surgical versus percutaneously created arteriovenous hemodialysis fistulas. J Vasc Surg 2021; 74: 209-16.
58.
Malik J, Lomonte C, Rotmans J, et al. Hemodialysis vascular access affects heart function and outcomes: tips for choosing the right access for the individual patient. J Vasc Access 2021; 22 (1 suppl): 32-41.
59.
Soliman M, Attallah N, Younes H, Park WS, Bader F. Clinical and haemodynamic effects of arteriovenous shunts in patients with heart failure with preserved ejection fraction. Card Fail Rev 2022; 8: e05.