STATE OF THE ART PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The isolated heart perfusion model, a fundamental tool in cardiovascular research, has evolved significantly since its inception in the late 19th century. This review traces the development of the isolated heart model, from its early adaptations by pioneers such as Langendorff and Starling to modern advancements by researchers like Morgan and Neely. We discuss the various applications of the model in pharmacological testing, disease modeling, and educational settings, emphasizing its crucial role in understanding cardiac function and disease mechanisms. Recent technological enhancements, including high-resolution imaging, integration with bioengineering, and advanced genomic and proteomic analyses, have significantly broadened the capabilities of these models. Looking forward, we explore potential future developments such as the integration of precision medicine, stem cell research, and artificial intelligence, which promise to revolutionize the use of isolated heart perfusion models. This review highlights the model’s crucial role in bridging experimental research and clinical applications.
 
REFERENCES (54)
1.
Sutherland FJ, Hearse DJ. The isolated blood and perfusion fluid perfused heart. Pharmacol Res 2000; 41: 613-27.
 
2.
Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff---still viable in the new millennium. J Pharmacol Toxicol Methods 2007; 55: 113-26.
 
3.
Zimmer HG. The isolated perfused heart and its pioneers. News Physiol Sci 1998; 13: 203-10.
 
4.
Valentinuzzi ME, Beneke K, González GE. Ludwig: the bioengineer. IEEE Pulse 2012; 3: 68-9, 72, 74-5 passim.
 
5.
Zimmer HG. Carl Ludwig: the man, his time, his influence. Pflugers Arch 1996; 432 (3 Suppl): R9-22.
 
6.
Meinertz T. Zu Unrecht vergessen: Carl Ludwig, Begründer der modernen Physiologie [Unfairly Forgotten: Carl Ludwig: The Founder of Modern Physiology]. Dtsch Med Wochenschr 2021; 146: 1599-604.
 
7.
Ding XR, Zhao N, Yang GZ, et al. Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th Birth Anniversary of Carl Ludwig. IEEE J Biomed Health Inform 2016; 20: 1455-65.
 
8.
Ludwig C. Beiträge zur Kenntnis des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme. Arch Anat Physiol Med (Müller Arch.) 1847; 242-302.
 
9.
Wild F. Über die peristaltische Bewegung des Oesophagus, nebst einigen Bemerkungen über diejenigen des Darms. Z Rat Med 1846; 5: 76-132.
 
10.
Zimmer HG. Modifications of the isolated frog heart preparation in Carl Ludwig’s Leipzig Physiological Institute: relevance for cardiovascular research. Can J Cardiol 2000; 16: 61-9.
 
11.
Zimmer HG. Profiles in cardiology. Ilya Fadeyevich Tsion, alias Elias Cyon, alias Elie de Cyon. Clin Cardiol 2004; 27: 584-5.
 
12.
Kennan GF. The curious monsieur Cyon. Am Scholar 1986; 55: 449-75.
 
13.
Cyon E. Über den Einfluss der Temperaturänderungen auf Zahl, Dauer und Stärke der Herzschläge. Berichte über die Verhandlungen der Koniglich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch- Physische Classe 1866; 18: 256-306.
 
14.
Fye WB. Henry Pickering Bowditch. Clin Cardiol 1994; 17: 221-2.
 
15.
Coats J. Wie ändern sich durch die Erregung des N. vagus die Arbeit unf die innern Reize des Herzens? Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft zu Leipzig. Mathematisch-Physische Classe. 1869; 21: 360-91.
 
16.
Bowditch HP. Über die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft zu Leipzig. Mathematisch-Physische Classe 1871; 24: 652-89.
 
17.
Usman A, Gandhi J, Gupta G. Physiology, Bowditch Effect. 2023 Jan 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 30725706.
 
18.
Farooq O, Fine EJ. Neurognostics question: an American physician-physiologist who had profound impacts on physiology and medical education in the United States. Henry Pickering Bowditch. J Hist Neurosci 2013; 22: 198, 219-24.
 
19.
Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (Lond.) 1883; 4: 29-42.
 
20.
Fye WB. H. Newell Martin--a remarkable career destroyed by neurasthenia and alcoholism. J Hist Med Allied Sci 1985; 40: 133-66.
 
21.
Breathnach CS. Henry Newell Martin (1848-1893). A pioneer physiologist. Med Hist 1969; 13: 271-9.
 
22.
Martin HN. The direct influence of gradual variations of temperature upon the rate of beat of the dog´s heart. Phil Trans R Soc Lond 1883; 174: 663-88.
 
23.
Taegtmeyer H. One hundred years ago: Oscar Langendorff and the birth of cardiac metabolism. Can J Cardiol 1995; 11: 1030-5.
 
24.
Langendorff O. Geschichtliche Betrachtungen zur Methode des überlebenden Warmblüterherzens. Muench Med Wochenschr 1903; 50: 508-9.
 
25.
Tigerstedt R. Oscar Langendorff. Ergeb Physiol 1909; 8: 797-812.
 
26.
Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch 1895; 61: 291-332.
 
27.
Kyle RA, Shampo MA. Otto Loewi (1873--1961). JAMA 1979; 241: 463.
 
28.
Borges R, García AG. One hundred years from Otto Loewi experiment, a dream that revolutionized our view of neurotransmission. Pflugers Arch 2021; 473: 977-81.
 
29.
Loewi O. Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitteilung. Arch Physiol 1921; 189: 239-42.
 
30.
Zimmer HG. Otto Loewi and the chemical transmission of vagus stimulation in the heart. Clin Cardiol 2006; 29: 135-6.
 
31.
Kuhtz-Buschbeck JP, Drake-Holland A, Noble MIM, Lohff B, Schaefer J. Rediscovery of Otto Frank’s contribution to science. J Mol Cell Cardiol 2018; 119: 96-103.
 
32.
Han JC, Loiselle D, Taberner A, Tran K. Re-visiting the Frank-Starling nexus. Prog Biophys Mol Biol 2021; 159: 10-21.
 
33.
Frank O. Zur Dynamik des Herzmuskels. Z Biol 1895; 32: 370-437.
 
34.
Monge García MI, Santos A. Understanding ventriculo-arterial coupling. Ann Transl Med 2020; 8: 795.
 
35.
Fye WB. Ernest Henry Starling. Clin Cardiol 2006; 29: 181-2.
 
36.
Starling EH. On the absorption of fluids from the connective tissue Spaces. J Physiol 1896; 19: 312-26.
 
37.
Henriksen JH. Ernest Henry Starling (1866-1927): the scientist and the man. J Med Biogr 2005; 13: 22-30.
 
38.
Van der Kloot W. Great scientists wage the great war. Stroud: Fonthill Media 2014; 49-73.
 
39.
O’Connor WJ. “Franklin Pattingall Knowlton”. British Physiologists 1885–1914: A Biographical Dictionary. Manchester University Press 1991; 149-50.
 
40.
Katz AM. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation 2002; 106: 2986-92.
 
41.
Han JC, Taberner AJ, Loiselle DS, Tran K. Cardiac efficiency and Starling’s Law of the Heart. J Physiol 2022; 600: 4265-85.
 
42.
Starling EH. The circulatory changes associated with exercise. J Royal Army Medical Corps 1920; 34: 258-72.
 
43.
Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 1967; 212: 804-14.
 
44.
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50: 940-50.
 
45.
Doring HJ, Dehnert H. The isolated perfused heart according to Langendorff. BVM-BiomesstechnicVerlag 1987.
 
46.
Motayagheni N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia. MethodsX 2017; 4: 508-12.
 
47.
Barajas M, Yim PD, Gallos G, Levy RJ. An isolated retrograde-perfused newborn mouse heart preparation. MethodsX 2020; 7: 101058.
 
48.
Schültke E, Lerch M, Kirschstein T, et al. Modification of the Langendorff system of the isolated beating heart for experimental radiotherapy at a synchrotron: 4000 Gy in a heart beat. J Synchrotron Radiat 2022; 29: 1027-32.
 
49.
Leivaditis V, Koletsis E, Tsopanoglou N, et al. The coadministration of levosimendan and exenatide offers a significant cardioprotective effect to isolated rat hearts against ischemia/reperfusion injury. J Cardiovasc Dev Dis 2022; 9: 263.
 
50.
Ruggeri GM, Qua Hiansen J, Pivetta E, et al. Description of a novel set-up for functional echocardiographic assessment of left ventricular performance during ex vivo heart perfusion. Anesth Analg 2018; 127: e36-9.
 
51.
Dejea H, Schlepütz CM, Méndez-Carmona N, et al. A tomographic microscopy-compatible Langendorff system for the dynamic structural characterization of the cardiac cycle. Front Cardiovasc Med 2022; 9: 1023483.
 
52.
O’Shea C, Winter J, Kabir SN, et al. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 2022; 9: 135.
 
53.
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. Data-independent acquisition proteomics and N-terminomics methods reveal alterations in mitochondrial function and metabolism in ischemic-reperfused hearts. J Proteome Res 2024; 23: 844-56.
 
54.
Vervoorn MT, Amelink JJGJ, Ballan EM, et al. Gene therapy during ex situ heart perfusion: a new frontier in cardiac regenerative medicine? Front Cardiovasc Med 2023; 10: 1264449.
 
ISSN:2451-0629
Journals System - logo
Scroll to top