

Changing trends in myocardial infarction mortality among young adults in the United States: a 25-year analysis of disparities and the COVID-19 impact

Ahmad Mesmar¹, Rawan Abukhater¹, Waleed Abdalla², Eeshal Zulfiqar³, Maryam Shahzad³, Sonia Hurjkaliani³, Sidra Shah⁴, Noha Aboukhater¹, Duaa Aljuhaymi⁵, Ahmad Talaat Deiab¹, Babiker Elsiraj¹, Muhammad Usman⁶, Talal Warsi⁷, Samah Fadlelseed¹, Omar Mohamad Alhaj¹, Mushood Ahmed^{8*}, Ashish Gupta⁹, Farhan Shahid¹⁰, Raheel Ahmed^{11,12}, Syed Khurram M Gardezi¹³

¹Sheikh Shakhbout Medical City SSMC, Abu Dhabi, UAE

²Healthline Medical Group, UAE

³Dow University of Health Sciences, Karachi, Pakistan

⁴Royal Cornwall Hospital, Cornwall, UK

⁵Princess Nourah bint Abdulrahman University, Riyadh, KSA

⁶Sharif Medical and Dental College Lahore, Pakistan

⁷University Hospitals Plymouth NHS Trust, Plymouth, UK

⁸Rawalpindi Medical University, Rawalpindi, Pakistan

⁹Sunderland Royal Hospital, UK

¹⁰Queen Elizabeth University Hospital, Birmingham, UK

¹¹Royal Brompton Hospital, London, UK

¹²National Heart & Lung Institute, Imperial College London, UK

¹³Khalifa University, Abu Dhabi, UAE

***Corresponding author:**

Mushood Ahmed

Rawalpindi Medical

University

Rawalpindi, Pakistan

E-mail: R.Ahmed21@imperial.ac.uk

Submitted: 18 March 2025; Accepted: 5 August 2025

Online publication: 25 August 2025

Arch Med Sci Atheroscler Dis 2025; 10: e104–e111

DOI: <https://doi.org/10.5114/amsad/209035>

Copyright © 2025 Termedia & Banach

Abstract

Introduction: Myocardial infarction (MI) generally occurs among old individuals. However, changing dietary patterns, stress, and smoking have led to an increased risk of MI among young adults. This study aimed to analyze 25-year MI-mortality-related trends among young adults (15–44 years) in the US.

Material and methods: The death certificates from the CDC WONDER database (1999–2023) were analyzed to identify MI-related mortality, reporting age-adjusted mortality rates (AAMRs) per 100,000 people, and annual percentage changes (APCs).

Results: A total of 91,482 deaths were attributed to MI among young adults in the US from 1999 to 2023. The AAMRs declined from 3.8 in 1999 to 2.5 in 2018, followed by an increase to 3.2 by 2021 (APC = 8.1), coinciding with the COVID-19 pandemic. This was followed by a decline to an AAMR of 2.3 in 2023. Men had consistently higher AAMR compared to women throughout the study period (average AAMR: 4.5 vs. 1.8). Among racial/ethnic groups, the highest AAMR was observed in the non-Hispanic (NH) Black or African American individuals (5), followed by the NH White (3.2), Hispanic or Latino (1.5), and NH Other populations (1.3) in 2023. The southern region had the highest AAMR when stratified by census regions, and rural areas had higher mortality rates than urban areas (6.4 vs. 2.6).

Conclusions: From 1999 to 2023, MI-related mortality among young adults in the US showed an overall decline, with a temporary increase during the COVID-19 pandemic. Men, NH Black individuals, and those in rural or southern regions had consistently higher mortality rates. These findings highlight persistent disparities in MI-related mortality across demographic and geographic groups.

Key words: myocardial infarction, mortality, young individuals, USA.

Introduction

Myocardial infarction (MI), commonly referred to as a heart attack, is a leading cause of morbidity and mortality worldwide. Traditionally considered a condition of older adults, MI in young individuals presents unique challenges in terms of prevention, diagnosis, and management. The occurrence of MI in younger populations has profound implications, not only for individual health outcomes but also for public health systems, given the potential for long-term disability and economic impact during a productive phase of life [1, 2].

Despite advances in cardiovascular care, the burden of MI in younger populations remains underexplored. Understanding the epidemiology, risk factors, and trends of MI in this age group is essential to inform targeted prevention and intervention strategies. Previous studies have highlighted potential differences in risk factor profiles, including a higher prevalence of smoking, dyslipidemia, and psychosocial stress, compared to older cohorts [3–5]. However, disparities in outcomes based on demographic factors such as age, gender, race, and socioeconomic status remain under-characterized [6, 7].

The Centers for Disease Control and Prevention Wide-ranging Online Data for Epidemiologic Research (CDC WONDER) provides a valuable platform for analyzing population-level health outcomes, offering insights into demographic variations, temporal trends, and disparities in disease burden. This study utilized CDC WONDER to investigate the epidemiology of MI in young individuals, aiming to help develop tailored public health and clinical strategies to reduce the burden of early-onset cardiovascular disease [8].

Material and methods

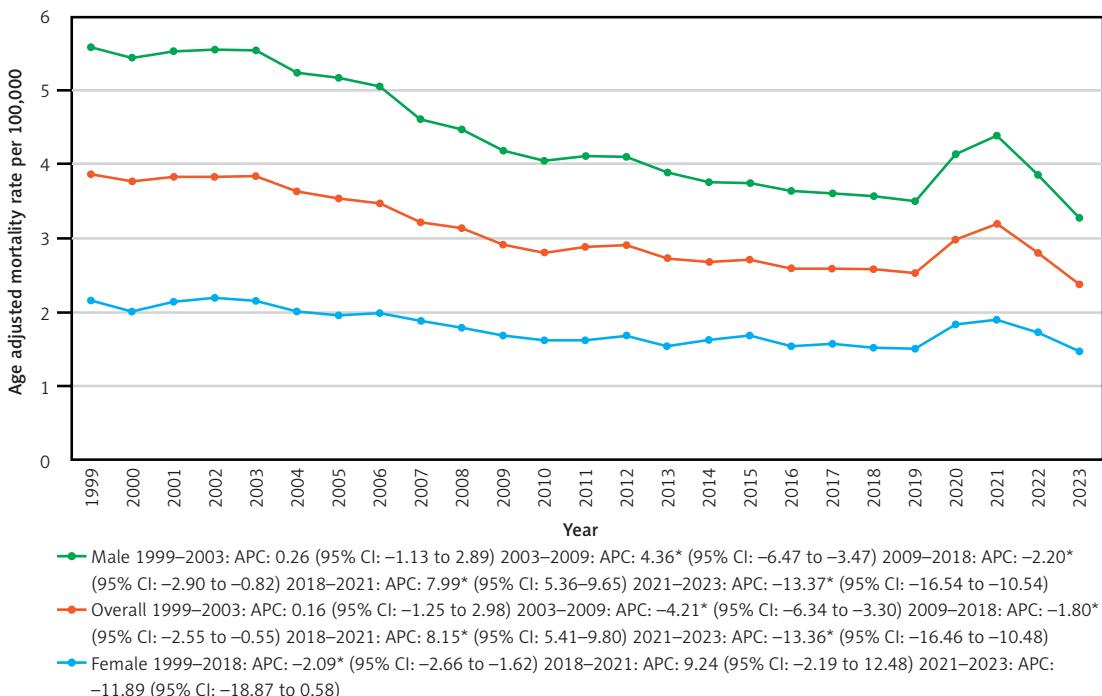
Study setting and population

Deaths in the United States related to myocardial infarction (MI) among young adults were analyzed using data from the CDC WONDER (Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research) database. CDC WONDER serves as a comprehensive repository of death certificate data from all fifty states and the District of Columbia.

MI was defined as a composite measure, encompassing deaths resulting from myocardial infarction (International Classification of Diseases, 10th Revision [ICD-10] codes I21 and I22) among adults aged 15–44 years of age. Since this study used publicly available, de-identified government data, approval from an institutional review board was not necessary. The research followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines to maintain methodological rigor [9].

Data abstraction

Data on MI-related deaths and population sizes were collected, along with demographic information (sex, race/ethnicity, and age) and regional details (urban-rural and state) from 1999 to 2023. Race/ethnicity categories included non-Hispanic (NH) white, NH Black or African American, NH others (such as NH Asian or Pacific Islander, NH American Indian or Alaska Native), and Hispanics or Latinos. These classifications have been used in previous analyses from the CDC WONDER database, based on death certificate data. Trends in mortality from MI in young adults were evaluated based on state-specific variations, US census regions (Northeast, Midwest, South, West), and county-level urbanization classifications. Counties were categorized as rural (micropolitan, non-core regions) or urban (large central metro, large fringe metro, medium metro, small metro) based on the 2013 National Centers for Health Statistics Urban-Rural Classification Scheme (10). Similar stratification has been used in prior administrative database studies [5, 10–13].


Statistical analysis

Crude and age-adjusted mortality rates per 100,000 population were calculated. Crude mortality rates (CMRs) were derived by dividing the total number of MI-related deaths by the US population for that year. Age-adjusted mortality rates (AAMRs) were computed by adjusting the MI-related deaths to match the 2000 US population, as outlined earlier [14]. The Joinpoint Regression Program (Joinpoint V 5.1.0.0, National Cancer Institute) was employed to analyze trends in both AAMRs and CMRs using annual percent change (APC) [15]. This method identifies significant changes in AAMRs and CMRs over time by fitting log-linear regression models to intervals where changes occurred. APCs, along with their 95% confidence intervals (CI), were calculated for the AAMRs and CMRs at the points where significant changes (joint points) occurred, using the Monte Carlo permutation test. The APCs were considered significant if the slope indicating the mortality change was statistically different from zero, based on 2-tailed t testing. Statistical significance was determined at $p < 0.05$.

Results

Overall

From 1999 to 2023, a total of 91,482 deaths among young adults in the United States were attributed to MI. The AAMR exhibited notable trends during this period. Initially, the AAMR remained stagnant from 1999 to 2003. However,

Figure 1. Overall and sex-stratified age-adjusted mortality rates (AAMRs) per 100,000 individuals in the United States, 1999 to 2023

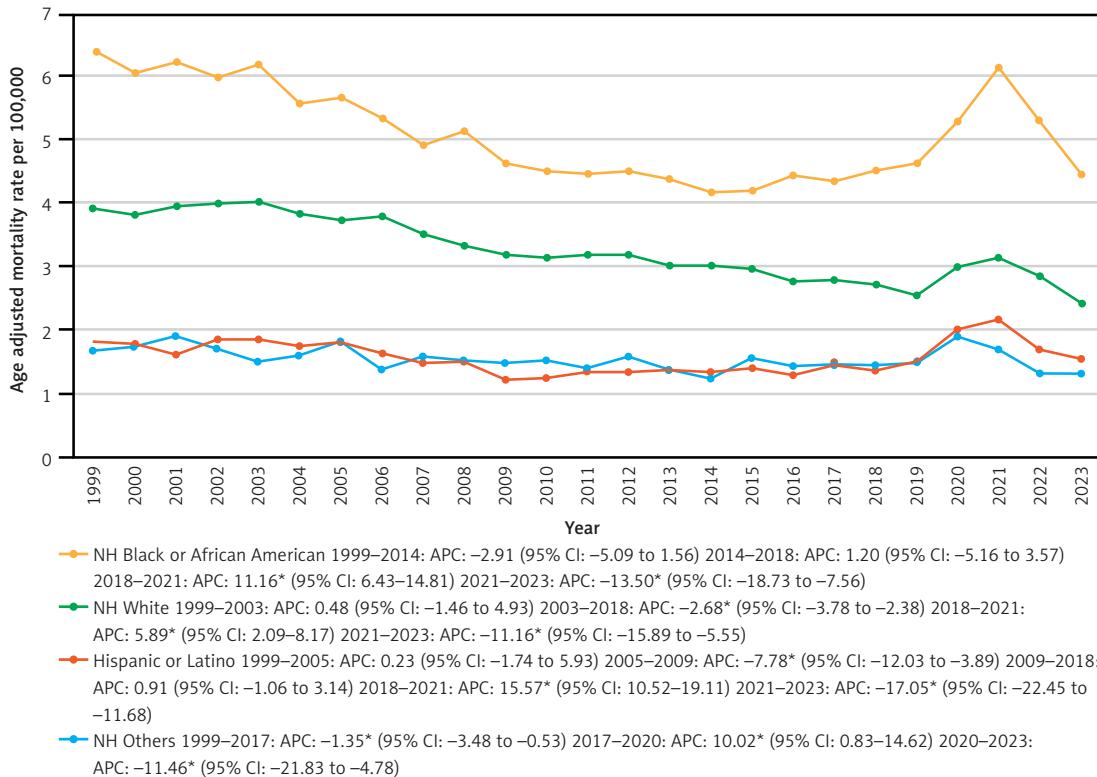
a significant decline was observed between 2003 and 2009, with the AAMR decreasing from 3.84 to 2.92 annually, corresponding to an APC of -4.21* (95% CI: -6.34 to -3.30; $p < 0.000001$, Supplementary Table SI, Figure 1).

This downward trend continued at a slower yet still significant rate from 2009 to 2018, as the AAMR dropped from 2.92 to 2.59, with an APC of -1.80* (95% CI: -2.55 to -0.55; $p = 0.018$). However, this was followed by a significant upward shift from 2018 to 2021, where the AAMR increased sharply from 2.59 to 3.2, reflecting an APC of 8.15* (95% CI: 5.41–9.80; $p < 0.000001$). From 2021 to 2023, the AAMR experienced a notable decline, dropping significantly from 3.2 to 2.38, with an APC of -13.36* (95% CI: -16.46 to -10.48; $p < 0.000001$, Supplementary Table SI).

Sex-stratified AAMR trends for MI in young adults

Throughout the study period, males consistently exhibited a significantly higher AAMR compared to females. Among males, the AAMR remained stable from 1999 to 2003. This was followed by a significant increase from 5.54 in 2003 to 4.19 in 2009, with an APC of 4.36* (95% CI: -6.47 to -3.47; $p < 0.000001$). Subsequently, the AAMR significantly decreased from 4.19 in 2009 to 3.58 in 2018, with an APC of -2.20* (95% CI: -2.90 to -0.82; $p = 0.0116$). A notable increase was then observed from 2018 to 2021, rising from 3.58 to 4.4 (APC = 7.99*, 95% CI: 5.36–9.65; $p < 0.000001$),

followed by a sharp decline from 4.4 in 2021 to 3.28 in 2023 (APC = -13.37*, 95% CI: -16.54 to -10.54; $p < 0.000001$, Supplementary Table SIII).


For females, the AAMR showed a significant decline from 2.16 in 1999 to 1.51 in 2018, with an APC of -2.09* (95% CI: -2.66 to -1.62; $p = 0.0228$). The trend then remained stable from 2018 to 2021 and continued to stabilize from 2021 to 2023.

MI-related AAMR stratified by race/ethnicity in young adults

Over the study period, the highest AAMR was observed in the NH Black or African American group, followed by the NH White, Hispanic or Latino, and NH Other populations.

For the NH Black or African American population, AAMR remained stable from 1999 to 2014 and again from 2014 to 2018. A significant increase was observed from 4.51 in 2018 to 6.14 in 2021, with an APC of 11.16* (95% CI: 6.43–14.81; $p < 0.000001$). This was followed by a significant decrease from 6.14 in 2021 to 4.45 in 2023, with an APC of -13.50* (95% CI: -18.73 to -7.56; $p < 0.000001$, Figure 2).

In the NH White population, the AAMR remained stable from 1999 to 2003. It then significantly decreased from 4.02 in 2003 to 2.71 in 2018, with an APC of -2.68* (95% CI: -3.78 to -2.38; $p < 0.000001$). From 2018 to 2021, it increased significantly from 2.71 to 3.14, with an APC of 5.89* (95% CI: 2.09–8.17; $p = 0.0056$), followed by a significant decrease from 3.14 in 2021

Figure 2. Age-adjusted mortality rates (AAMRs) per 100,000 individuals stratified by race/ethnicity in the United States, 1999 to 2023

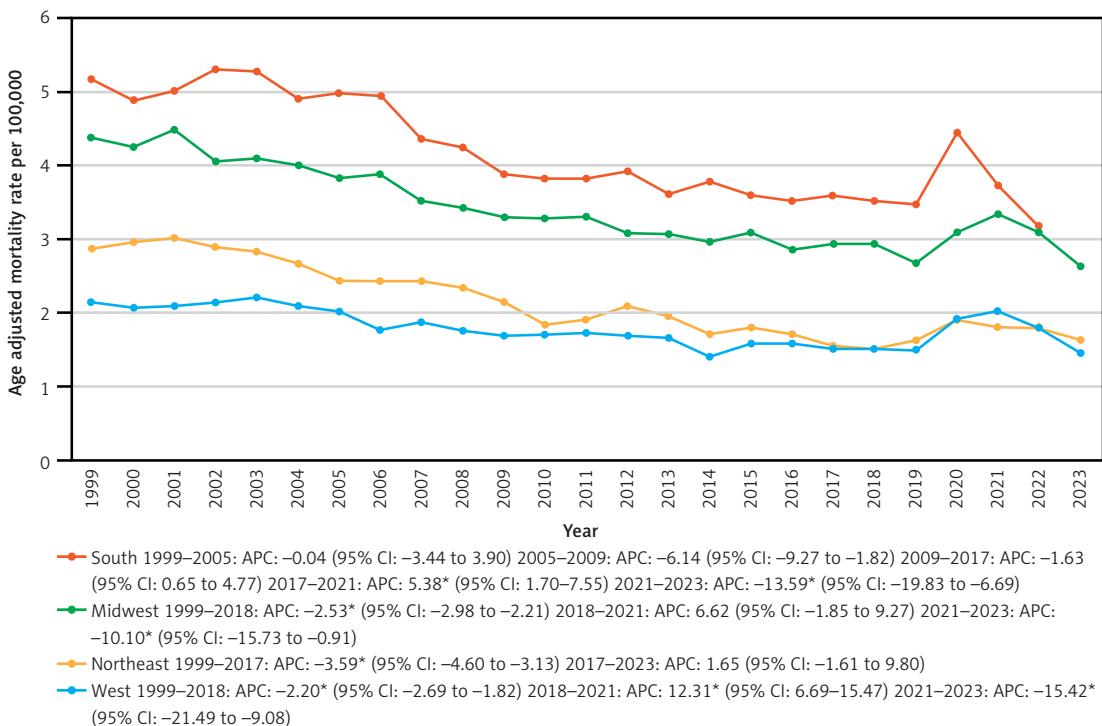
to 2.42 in 2023, with an APC of -11.16* (95% CI: -15.89 to -5.55; $p < 0.000001$).

For the Hispanic or Latino group, the AAMR remained stable from 1999 to 2005, then significantly decreased from 1.8 in 2005 to 1.22 in 2009, with an APC of -7.78* (95% CI: -12.03 to -3.89; $p = 0.014$). The trend remained stable from 2009 to 2018. From 2018 to 2021, the AAMR increased significantly from 1.36 to 2.15, with an APC of 15.57* (95% CI: 10.52–19.11; $p < 0.000001$), followed by a decrease from 2.15 in 2021 to 1.54 in 2023, with an APC of -17.05* (95% CI: -22.45 to -11.68; $p < 0.000001$).

Finally, in the NH Other population, AAMR decreased from 1.68 in 1999 to 1.45 in 2017, with an APC of -1.35* (95% CI: -3.48 to -0.53; $p = 0.024$). It then increased from 1.45 in 2017 to 1.91 in 2020, with an APC of 10.02* (95% CI: 0.83–14.62; $p = 0.030$), before decreasing again from 1.91 in 2020 to 1.3 in 2023, with an APC of -11.46* (95% CI: -21.83 to -4.78; $p = 0.0228$, Supplementary Table SIV).

MI-related AAMR in young adults stratified by geographical region

Statewide

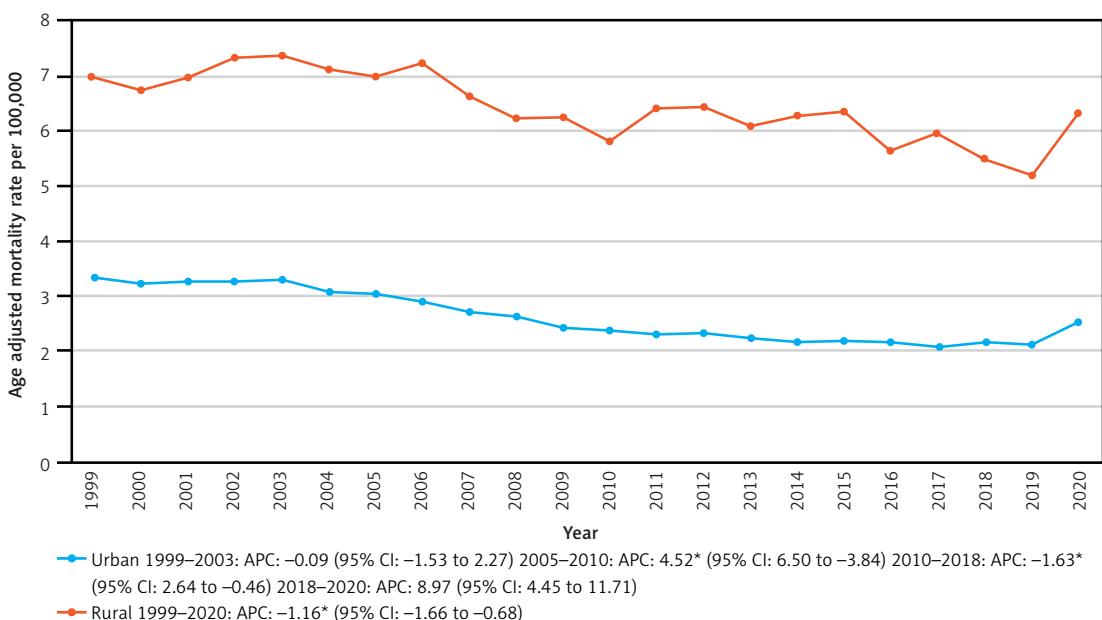

Throughout the study period, significant statewide variation in MI-related mortality in young

adults was observed. From 1999 to 2020, states falling within the top 90th percentile for mortality rates included Arkansas, Mississippi, Kentucky, Alabama, and Louisiana, while those in the bottom 10th percentile were Minnesota, Oregon, Massachusetts, Connecticut, and Utah. In the subsequent period from 2021 to 2023, the states with the highest mortality rates were Mississippi, Arkansas, South Dakota, Kentucky, Missouri, and Alabama, whereas New Hampshire, Colorado, Nevada, Minnesota, Connecticut, Massachusetts, and Alaska ranked in the lowest 10th percentile (Supplementary Table SV).

Census region

Between 1999 and 2023, the highest MI-related mortality rates were recorded in the South, followed by the Midwest, Northeast, and West regions. In the South, the AAMR remained stable from 1999 to 2005, continuing this trend through 2009 and 2017. A significant increase was observed from 2017 to 2021, rising from 3.6 to 4.45 (APC = 5.38*, 95% CI: 1.70–7.55; $p = 0.0064$), followed by a sharp decline from 2021 to 2023, dropping from 4.45 to 3.17 (APC = -13.59*, 95% CI: -19.83 to -6.69; $p = 0.0032$, Figure 3).

In the Midwest, the AAMR significantly decreased from 4.39 in 1999 to 2.93 in 2018 (APC = -2.53*, 95% CI: -2.98 to -2.21; $p =$


Figure 3. Age-adjusted mortality rates (AAMRs) per 100,000 individuals stratified by census region in the United States, 1999 to 2023

0.0112), followed by a stable trend from 2018 to 2021. A subsequent significant decline occurred from 2021 to 2023, with rates falling from 3.35 to 2.63 (APC = -10.10^* , 95% CI: -15.73 to -0.91 ; $p = 0.0348$).

In the Northeast, the AAMR significantly declined from 2.87 in 1999 to 1.55 in 2017 (APC =

-3.59^* , 95% CI: -4.60 to -3.13 ; $p < 0.000001$) and then stabilized from 2017 to 2023.

In the West, the AAMR significantly decreased from 2.14 in 1999 to 1.51 in 2018 (APC = -2.20^* , 95% CI: -2.69 to -1.82 ; $p < 0.000001$, Supplementary Table S VI). A sharp increase followed, rising from 1.51 in 2018 to 2.02 in 2021 (APC =

Figure 4. Age-adjusted mortality rates (AAMRs) per 100,000 individuals stratified by urbanization in the United States, 1999 to 2020

*Data for urbanization AAMRs were unavailable for 2021-2023.

12.31*, 95% CI: 6.69–15.47; $p = 0.0004$), before significantly decreasing from 2021 to 2023, with rates dropping from 2.02 to 1.45 (APC = -15.42^* , 95% CI: -21.49 to -9.08 ; $p = 0.0004$).

Urban-rural

Throughout the study period, rural areas consistently recorded a higher AAMR compared to urban areas. In urban regions, the AAMR remained stable from 1999 to 2003, followed by a significant increase from 3.04 in 2005 to 2.38 in 2010 (APC = 4.52^* , 95% CI: 6.50 to -3.84 ; $p < 0.000001$). This was followed by a significant decrease from 2.38 in 2010 to 2.16 in 2018 (APC = -1.63^* , 95% CI: 2.64 to -0.46 ; $p = 0.0208$, Supplementary Table SVII), with stability observed from 2018 to 2020. In rural areas, the AAMR showed a significant decline from 6.97 in 1999 to 6.33 in 2020 (APC = -1.16^* , 95% CI: -1.66 to -0.68 ; $p < 0.000001$, Figure 4).

Discussion

This observational analysis of mortality trends attributed to MI among young adults in the United States from 1999 to 2023 revealed several crucial findings. First, the AAMR showed distinct phases, with an initial period of stability from 1999 to 2003, followed by a significant decline from 2003 to 2018, interrupted by a sharp rise between 2018 and 2021, and finally a steep reduction from 2021 to 2023. Second, males consistently demonstrated higher AAMRs compared to females, with notable variations in trends over time. Third, significant racial disparities were evident, as the highest AAMRs were observed in the NH Black or African American population, followed by NH White, Hispanic or Latino, and NH Other populations. Fourth, geographic disparities were prominent, with the South consistently recording the highest mortality rates across census regions and rural areas experiencing disproportionately higher AAMRs compared to urban settings.

Our study identified important demographic and regional disparities in MI mortality, revealing patterns that are often masked within aggregate cardiovascular disease (CVD) mortality data [5, 16]. While prior studies have noted a stagnation or slight increase in CVD mortality rates among middle-aged adults, we specifically observed that MI mortality rates have declined more slowly younger adults over the past two decades [17]. The higher prevalence of traditional cardiovascular risk factors such as hypertension, diabetes, and obesity in the middle-aged population likely drives this disparity. For example, during 2015–2016, hypertension prevalence was markedly higher in individuals aged 40–59 years (33.2%) compared with those aged 18–39 years (7.5%), emphasizing

the disproportionate burden of cardiometabolic diseases in older adults [2, 18–20]. The rise in mortality from 2019 to 2021 can be attributed to the COVID-19 pandemic, which was associated with an increase in CVD mortality in the US. The COVID-19 pandemic put immense pressure on global healthcare systems, significantly disrupting medical care for US patients with CVD and worsening cardiovascular risk factors [21, 22].

Consistent with prior data, we found higher MI mortality rates in men compared with women, though both sexes exhibited comparable reductions in mortality over time. Additionally, MI mortality was notably higher in non-Hispanic (NH) Black adults compared with NH White adults. This racial disparity may be attributed to the higher prevalence of hypertension and diabetes in NH Black populations, compounded by socioeconomic factors such as lower access to healthcare, higher uninsured rates, and systemic inequities [23–25]. NH Black patients also experience reduced access to revascularization procedures, guideline-recommended medical therapy, and poorer post-AMI outcomes, even after adjusting for clinical characteristics [26–29]. These findings underscore the urgent need to address healthcare disparities and improve equitable access to cardiovascular care, particularly among racial and ethnic minorities.

Regional disparities were also evident, with higher MI mortality observed in the Southern states and rural counties compared with other regions and urban areas. The Southern states' higher burden of cardiovascular risk factors – including obesity, smoking, hypertension, and physical inactivity – likely contributes to these findings [30, 31]. For instance, states such as Mississippi, Arkansas, and Kentucky report some of the nation's highest rates of obesity and physical inactivity. Furthermore, socioeconomic factors, including education, employment, and healthcare access, significantly influence these trends. Notably, most high-mortality Southern states were slow to adopt Medicaid expansion under the Patient Protection and Affordable Care Act, which likely limited access to care for nonelderly adults and exacerbated existing disparities [32, 33]. The rural-urban gap in CVD mortality, which has doubled over the past two decades, reflects the same unequal distribution of socioeconomic and health resources between these regions [32].

This study has several limitations. First, the reliance on death certificate data introduces the potential for misclassification of cause of death based on ICD-10 codes. However, prior studies have shown that discrepancies between death certificates and physician-adjudicated causes of death are minimal among nonelderly adults and are unlikely to significantly impact observed trends. Additionally,

the database lacks detailed information on clinical and social determinants of health, which restricts our ability to directly attribute disparities to specific variables. Finally, as the database assigns deaths to the state of residence, it does not account for migration between states, which could marginally influence regional mortality rates.

In conclusion, mortality rates due to MI among young adults in the US decreased from 1999 to 2018, followed by a spike between 2018 and 2021 mainly during the COVID-19 pandemic, and then fell sharply to pre-pandemic levels. Men had consistently higher death rates than women, while racial disparities showed that NH Black individuals had the highest rates. Geographically, the South and rural areas had higher AAMR, highlighting the need for targeted interventions.

Funding

No external funding.

Ethical approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

References

1. Virani SS, Alonso A, Aparicio HJ, et al. Heart Disease and Stroke Statistics-2021 Update: a report from the American Heart Association. *Circulation* 2021; 143: e254-743.
2. Gupta A, Wang Y, Spertus JA, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. *J Am Coll Cardiol* 2014; 64: 337-45.
3. Ahmed M, Jain H, Javaid H, et al. Efficacy of sodium-glucose cotransporter-2 inhibitors in patients with acute myocardial infarction: a meta-analysis of randomised controlled trials. *Endocrinol Diabetes Metab* 2024; 7: e514.
4. Young L, Cho L. Unique cardiovascular risk factors in women. *Heart Br Card Soc* 2019; 105: 1656-60.
5. Ahmed M, Javaid H, Shafiq A, et al. Trends and disparities in coronary artery disease and obesity-related mortality in the United States From 1999–2022. *Endocrinol Diabetes Metab* 2024; 7: e70010.
6. Lichtman JH, Leifheit EC, Safdar B, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction: evidence from the VIRGO Study. *Circulation* 2018; 137: 781-90.
7. O'Flaherty M, Allender S, Taylor R, Stevenson C, Peeters A, Capewell S. The decline in coronary heart disease mortality is slowing in young adults (Australia 1976-2006): a time trend analysis. *Int J Cardiol* 2012; 158: 193-8.
8. Yandrapalli S, Nabors C, Goyal A, Aronow WS, Frishman WH. Modifiable risk factors in young adults with first myocardial infarction. *J Am Coll Cardiol* 2019; 73: 573-84.
9. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandebroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *J Clin Epidemiol* 2008; 61: 344-9.
10. Ingram DD, Franco SJ. 2013 NCHS Urban-Rural Classification Scheme for Counties. *Vital Health Stat 2*. 2014; 166: 1-73.
11. Ahmed M, Nofal A, Shafiq A, et al. Rising mortality rates linked to type-2 diabetes and obesity in the United States: an observational analysis from 1999 to 2022. *J Diabetes Investig* 2025; 16: 492-500.
12. Ahmed R, Ahmed M, Khlidj Y, et al. Nationwide cross-sectional analysis of mortality trends in patients with sarcoidosis and non-ischemic cardiovascular disease-the impact of gender, ethnicity, geographical location, and COVID-19 pandemic. *J Clin Med* 2024; 13: 7463.
13. Ansari HUH, Mahboob E, Samad MA, et al. Reversal in the trends of atherosclerosis-associated cerebrovascular disease mortality in the United States, 1999-2020. *Curr Probl Cardiol* 2024; 50: 102935.
14. Anderson RN, Rosenberg HM. Age standardization of death rates: implementation of the year 2000 standard. *Natl Vital Stat Rep* 1998; 47: 1-16, 20.
15. Joinpoint Regression Program [Internet]. [cited 2024 Aug 3]. Available from: <https://surveillance.cancer.gov/joinpoint/>
16. Woodruff RC, Tong X, Khan SS, et al. Trends in cardiovascular disease mortality rates and excess deaths, 2010-2022. *Am J Prev Med* 2024; 66: 582-9.
17. Shah NS, Lloyd-Jones DM, Kandula NR, et al. Adverse trends in premature cardiometabolic mortality in the United States, 1999 to 2018. *J Am Heart Assoc* 2020; 9: e018213.
18. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kruszon-Moran D. Hypertension prevalence and control among adults: United States, 2015-2016. *NCHS Data Brief* 2017; 289: 1-8.
19. Vikulova DN, Grubisic M, Zhao Y, et al. Premature atherosclerotic cardiovascular disease: trends in incidence, risk factors, and sex-related differences, 2000 to 2016. *J Am Heart Assoc* 2019; 8: e012178.
20. Simon S, Ho PM. Ethnic and racial disparities in acute myocardial infarction. *Curr Cardiol Rep* 2020; 22: 88.
21. Mak IL, Wan EYF, Wong TKT, et al. The spill-over impact of the novel coronavirus-19 pandemic on medical care and disease outcomes in non-communicable diseases: a narrative review. *Public Health Rev* 2022; 43: 1604121.
22. Song S, Guo C, Wu R, et al. Impact of the COVID-19 pandemic on cardiovascular mortality and contrast analysis within subgroups. *Front Cardiovasc Med* 2024; 11: 1279890.
23. Graham GN, Jones PG, Chan PS, Arnold SV, Krumholz HM, Spertus JA. Racial disparities in patient characteristics and survival after acute myocardial infarction. *JAMA Netw Open* 2018; 1: e184240.
24. Noonan AS, Velasco-Mondragon HE, Wagner FA. Improving the health of African Americans in the USA: an overdue opportunity for social justice. *Public Health Rev* 2016; 37: 12.
25. Jain H, Tariq MD, Hurjkaliani S, et al. Meta-analysis on the racial disparity of outcomes following alcohol septal ablation in hypertrophic cardiomyopathy. *Cardiol Rev* 2024 Nov 27; doi: 10.1097/CRD.0000000000000829.
26. Rodríguez JE, Campbell KM. Racial and ethnic disparities in prevalence and care of patients with type 2 diabetes. *Clin Diabetes* 2017; 35: 66-70.
27. Deshpande S, Sawatari H, Rangan K, et al. Pericardial tamponade in coronary interventions: morbidity and mortality. *Catheter Cardiovasc Interv* 2024; 104: 707-13.

28. Sabatine MS, Blake GJ, Drazner MH, et al. Influence of race on death and ischemic complications in patients with non-ST-elevation acute coronary syndromes despite modern, protocol-guided treatment. *Circulation* 2005; 111: 1217-24.
29. Ahmed M, Nadeem ZA, Ahsan A, et al. Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention: a systematic review, meta-analysis, and meta-regression of randomized control trials. *Catheter Cardiovasc Interv* 2025; 105: 68-80.
30. Churchwell K, Elkind MSV, Benjamin RM, et al. Call to action: structural racism as a fundamental driver of health disparities: a presidential advisory from the American Heart Association. *Circulation* 2020; 142: e454-68.
31. Silverstein M, Hsu HE, Bell A. Addressing social determinants to improve population health: the balance between clinical care and public health. *JAMA* 2019; 322: 2379-80.
32. Cross SH, Mehra MR, Bhatt DL, et al. Rural-urban differences in cardiovascular mortality in the US, 1999-2017. *JAMA* 2020; 323: 1852-4.
33. Khatana SAM, Bhatla A, Nathan AS, et al. Association of medicaid expansion with cardiovascular mortality. *JAMA Cardiol* 2019; 4: 671-9.