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Diabetes management in the era of artificial 
intelligence
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A b s t r a c t

Artificial intelligence is growing quickly, and its application in the global 
diabetes pandemic has the potential to completely change the way this 
chronic illness is identified and treated. Machine learning methods have 
been used to construct algorithms supporting predictive models for the risk 
of getting diabetes or its complications. Social media and Internet forums 
also increase patient participation in diabetes care. Diabetes resource usage 
optimisation has benefited from technological improvements. As a lifestyle 
therapy intervention, digital therapies have made a  name for themselves 
in the treatment of diabetes. Artificial intelligence will cause a  paradigm 
shift in diabetes care, moving away from current methods and toward the 
creation of focused, data-driven precision treatment.

Key words: artificial intelligence, diabetes, diabetic foot, diabetic 
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Introduction

It is well-established that diabetes has become a global public health 
problem in the 21st century, with the main causes being the consump-
tion of nutrient-poor and calorie-rich foods and an increasingly seden-
tary lifestyle due to the Western pattern of lifestyle [1]. The increasing 
prevalence of diabetes is followed by high morbidity and mortality due 
to diabetic complications, and it is related with a high economic burden, 
making diabetes a significant health challenge [2]. Despite the novel an-
tidiabetic agents with several benefits (except glycaemic control), several 
challenges still exist in preventing and managing diabetes, especially in 
the era of technological achievements. Prevention and early diagnosis of 
diabetes and its complications [3], and regular follow-up of patients, and, 
most significantly, diabetes remains a chronic disease that demands the 
patient’s active, continuous role in its management [4]. The emergence 
of digital health technologies, especially artificial intelligence (AI), might 
help to address the above challenges and reduce the disease burden of 
diabetes in the future. 

AI is a general term that refers to a variety of techniques that enable 
computers to mimic human intelligence. AI includes various subdomains 
like machine learning and deep learning, and approaches like logistic re-
gressions and random forest [5]. Machine learning (ML) is a subset of 
AI focused on programs that improve over time with experience, and 
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deep learning (DL) is a subset of ML that uses arti-
ficial neural networks and large data sets to tackle 
computationally complex problems [6, 7]. AI has 
many implications in healthcare, and diabetes es-
pecially. The use of AI has the potential to improve 
screening and diagnosis, provide earlier, more 
targeted therapies, predict complications, reduce 
morbidity and mortality, improve quality of life, 
and decrease healthcare costs. The combination 
of AI approaches and digital health technologies 
(DHTs), such as medical devices, wearable devic-
es, and sensor technologies, could enable the de-
velopment and implementation of better chronic 
disease management services. 

Therefore, in this paper we summarise the ex-
isting literature data on the impact of AI on diabe-
tes management as well the early prediction and 
follow-up of diabetic complications. In addition, 
we examine the most recent developments in the 
use of AI in clinical diabetes treatment, taking into 
account the current context and the potential dif-
ficulties associated with this field of study. 

What is AI?

In the future, patients with diabetes might ex-
perience less disease burden due to the develop-
ment of DHTs, particularly AI. AI-based DHTs in di-
abetes care could help develop better preventive 
strategies for high-risk populations, manage pa-
tients unable to attend in-person appointments, 
provide real-time health, encourage self-man-
agement, and save time and money by minimis-
ing travel to in-person appointments [8]. ML [9] 
is a  subfield of AI, based on statistical methods 
that can automatically learn and enhance its per-
formance, such as accuracy, via supervised or 
unsupervised methods. Thanks to its exceptional 
feature extraction and pattern recognition capa-
bilities, which use multiple processing layers (ar-
tificial neurons) to learn representations of data 
with different levels of abstraction so that it as-
sociates the input with a  diagnostic output, DL 
[10], which employs advanced machine learning 
techniques, has achieved significant success in 
computer vision and natural language processing 
tasks. Depending on the kind of tasks that need to 
be solved, ML algorithms can be broadly divided 
into 2 groups: supervised and unsupervised [11]. 
Several “training” examples, containing inputs 
(like fundus photos) and the desired output labels 
(such the presence or absence of diabetic retinop-
athy), are gathered in supervised ML approaches. 
The algorithm learns to provide the proper output 
for a given input in new circumstances by exam-
ining the patterns in all the labelled input-output 
pairs [12].

Unsupervised ML techniques deduce the un-
derlying patterns in unlabelled data to discover 

outliers in the data, create low-dimensional repre-
sentations of the data, or depict images and vid-
eos. Examples of these uses include finding sub 
clusters of the original data [13, 14]. Other forms 
of machine learning exist as well, including rein-
forcement learning and semi-supervised learning 
[15–17]. A  subfield of ML known as semi-super-
vised learning makes use of both labelled and un-
labelled data to carry out specific learning tasks. It 
also makes extensive use of unlabelled data that 
is readily available in conjunction with usually 
smaller volumes of labelled data [15].

Given that supervised information, such as 
annotations of retinal lesions in fundus photo-
graphs, is lacking in a  large body of health-care 
data related to diabetes management and costs 
a lot of money to label or score, semi-supervised 
learning could use unlabelled or unscored data in 
conjunction with a  small number of supervised 
data to enhance the performance of AI models [7]. 
The technique known as reinforcement learning 
can be used to infer the best course of action from 
data and is intended to identify the best course of 
action that maximises total rewards [17]. It has 
been used to create flexible treatment plans and 
give diabetic patients the right amount of insulin 
in response to their urgent demands [16]. 

AI and diabetes

Prevention and early diagnosis

Prediction and early diagnosis of type 2 diabe-
tes (T2D) is essential because it allows a person 
at risk to take actions that can prevent onset or 
delay the progression of the disease as well as 
its complications. During the last decade a lot of 
models based on Ml have been developed to pre-
dict the development of T2D. To date, lots of dia-
betes onset prediction models have been created 
using statistics with known risk factors of diabe-
tes in large cohorts.

A study developed a ML model to predict T2D 
occurrence in the following year by means of vari-
ables in the current year using electronic health 
records from 2013 to 2018 in the Korean popu-
lation. The model used the following variables: 
fasting plasma glucose (FPG), HbA

1c, triglycerides, 
BMI, gamma-glutamyl transferase, age, uric acid, 
sex, smoking, drinking, physical activity, and 
family history, to predict the outcome as normal 
(non-diabetic), prediabetes, or diabetes. Based on 
the experimental results, the performance of the 
prediction model proved to be reasonably good 
at forecasting the occurrence of T2D [18]. Anoth-
er study using the National Health and Nutrition 
Examination Survey (NHANES) dataset developed 
models for cardiovascular, prediabetes, and diabe-
tes detection. The developed ensemble model for 
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cardiovascular disease (based on 131 variables) 
achieved an area under – receiver operating char-
acteristics (AU-ROC) score of 83.1% using no labo-
ratory results, and 83.9% accuracy with laboratory 
results. For pre-diabetic patients, the ensemble 
model had AU-ROC score of 73.7% without labo-
ratory data, and for laboratory-based data 84.4%. 
The main predictors in diabetes patients were 
waist size, age, self-reported weight, leg length, 
and sodium intake [19]. A study by Zueger et al. 
developed a (ML model predicting the risk of T2D 
in people with prediabetes. They analysed data 
of 13,943 individuals with prediabetes and built 
a ML model to predict the risk of transition from 
prediabetes to T2D, integrating information about 
demographics, biomarkers, medications, and co-
morbidities defined by disease codes. For a fore-
cast horizon of 5 years, the AU-ROC was 0.753 for 
the full ML model and 0.752 for a simplified model 
with 8 parameters [20]. Another AI model focused 
on early detection of prediabetes and T2DM using 
wearable technology and internet-of-things-based 
monitoring applications. The key contributing fac-
tors to the proposed model include heart rate, 
heart rate variability, breathing rate, breathing 
volume, and activity data (steps, cadence, and cal-
ories). The data were collected using an advanced 
wearable body vest and combined with manual re-
cordings of blood glucose, height, weight, age, and 
sex. The proposed model was tested and validat-
ed using Kappa analysis, and it achieved an overall 
agreement of 91%. Moreover, the diabetic profile 
of a participant using M-health applications and 
a wearable vest (smart shirt) improved when com-
pared to the traditional/routine practice [21]. 

A digital machine learning-based method to es-
timate the risk of diabetes based on retinal imag-
es has been developed and validated using both 
Asian and Caucasian data. Two separate data sets 
were used for external validation. The Hong Kong 
testing data contain 734 controls without diabe-
tes and 660 subjects with diabetes, and the UK 
testing data have 1682 subjects with diabetes. 
The 10-fold cross-validation using the support 
vector machine approach has a sensitivity of 92% 
and a  specificity of 96.2%. The separate testing 
data from Hong Kong provided a  sensitivity of 
99.5% and a specificity of 91.1%. For the UK test-
ing data, the sensitivity was 98.0%. Those with 
diabetes complications in both Hong Kong and UK 
data had a higher probability of risk of diabetes 
compared with diabetes subjects without com-
plications. The accuracy of the Caucasian retinal 
images was comparable with that of the Asian 
data. It implies that the digital method can be ap-
plied globally [22]. Using ML techniques, another 
study in China examined a noninvasive diabetic’s 
risk prediction model based on tongue features 

fusion, and it predicted the risk of prediabetes 
and diabetes using a classical ML algorithm and 
DL algorithm. The results of the study showed that 
tongue image information is a  potential marker 
that facilitates effective early diagnosis of predi-
abetes and diabetes [23].

While there are still issues with using ML mod-
els for clinical practice to predict new-onset dia-
betes, these issues could potentially be resolved 
and the accuracy of new-onset diabetes further 
improved with more advanced ML models and ad-
ditional data as an omics database (e.g. genomics, 
proteomics, metabolomics, microbiome) in ad-
dition to the aforementioned cohort datasets or 
electronic health records [24].

AI and managing diabetes

AI systems that regulate insulin delivery via an 
insulin pump based on continuous glucose moni-
toring (CGM) values are already in use in type 1 di-
abetes (T1D). The prediction of blood glucose (BG) 
is an ongoing study area because it can help with 
diabetes control. Even though BG prediction can 
be integrated into particular treatment-related ap-
plications (such as AI systems), it is typical for the 
scientific literature to merely present the general 
BG predictors’ raw performance. One important 
component of contextual information is meal in-
formation. It has been demonstrated in [25] that 
accurate meal time and content ground truth can 
be obtained using qualitative trend analysis based 
on CGM. Finally, because hypoglycaemic occur-
rences can have immediate negative implications, 
hypoglycaemia prediction via CGM is of special 
importance and another field in which AI has ben-
eficial implications. Thanks to the outstanding 
development of DL technology and advancements 
in clinical applications, the number of approved AI-
based medical devices has dramatically increased 
in the past few years [25]. 

Rather than only providing support for diabetes 
diagnosis, AI solutions that imitate the “hidden 
tips of treatments by a specialist” – such as ad-
justing insulin dosage – are now being explored. 
Advisor Pro, made by DreaMed Diabetes, Ltd., is 
one such product, which the FDA authorised in 
2018. This device uses AI to determine and sug-
gest whether remote insulin dose adjustments 
are necessary. It does this by sending data from 
the CGM and self-monitoring BG to a cloud server. 
Following that, doctors can assess the recommen-
dations and let patients know [26]. A total of 108 
T1D patients were randomised in a non-inferiority 
research, to be placed in one of two groups: man-
ually managed, receiving insulin treatments from 
a diabetes specialist, or AI managed, and receiving 
insulin treatments via the AI system.  When com-
pared to the expert manual managed group, the 
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outcomes showed that the AI-guided group’s tar-
geted blood glucose concentration maintenance 
and hypoglycaemia rates were not worse [27].  

An example of an AI system based on CGM 
that is paired with a smartphone application is the 
Medtronic Guardian Connect System, which re-
ceived FDA certification in 2018. It is typified by the 
AI’s use of CGM data to forecast a hypoglycaemia 
attack one hour ahead of time and notify the pa-
tient. The product data indicates that the alert’s ac-
curacy is 98.5%, occurring just 30 min prior to the 
beginning of hypoglycaemia. With this technology, 
patients receive alerts for hypoglycaemia based on 
their biometric data, which might be challenging to 
interpret at times. The patient can then take med-
ication, such as glucose pills, to avoid hypoglycae-
mia and its related consequences [27]. 

Treatment of diabetes is mostly dependent on 
self-management. With the development of AI, 
patients may now create data for their own pa-
rameters, manage their diabetes, and act as their 
own health professionals. Web-based programs, 
smartphone applications, and mobile phone ap-
plications have made eating habits and exercise 
patterns more widely known [28]. 

Numerous applications have been developed 
that offer personalised eating schedules and di-
etary regimens, as well as recommendations for 
changing food intake to fit a  person’s lifestyle. 
Wearables that track step counts, time, and inten-
sity of other activities can be used to track daily 
activity levels [29]. Wearable technology is a pow-
erful tool for encouraging behavioural chang-
es related to health [30]. These gadgets make it 
possible to track daily activity and can encourage 
someone to include a specific exercise into their 
routine to prevent chronic illnesses like T2D.

Several applications are also made to examine 
food images and provide information on the dish’s 
calorie and nutritional content. These applications 
can aid in controlling body weight and preventing 
obesity, which is known to be a risk factor for T2D 
[29]. Diabetes patients can now make everyday 
decisions about their food and exercise thanks to 
AI. Patients can evaluate the caloric content and 
quality of the food they consume thanks to apps. 
Patients who take a picture of their food and rate 
their intake are more accountable for their diabe-
tes treatment [31]. Web-based programs offer in-
formation on nutrition and exercise, and patients 
can register in daily consumption and activity 
data to receive ongoing feedback [28].

Diabetes control has been studied with digi-
tal therapies. In a  12-week interventional study, 
118 persons with T2D used a digital intervention 
through an app called FairyWell as well as a dig-
itally delivered human assistance every 2 weeks 
via phone coaching. Evaluating a durable switch to 

a plant-based diet and frequent exercise was the 
goal of the intervention. By the end of the study, 
28% of patients had achieved glycated hemoglo-
bin (HbA1c) < 6.5%, compared to all patients who 
had HbA

1c > 6.5% at baseline. Over 86% of par-
ticipants were still using the app after 12 weeks, 
and 57% of them had reduced their HbA

1c, their 
use of diabetes medications, or both. Patients 
responded well to the app, with 92% saying they 
felt more confident in the management of their 
diabetes compared to that prior to participating 
in the study [32]. The One Drop | Mobile app was 
created to assist patients with T1D and T2D in set-
ting objectives, tracking health outcomes, sched-
uling medication reminders, seeing statistics, and 
gaining data-driven insights. Over the course of 
a median of 4 months, 1288 patients reported an 
absolute reduction in HbA

1c ranging from 1.07% 
to 1.27%. Patients with diabetes who used the 
One Drop Mobile app to track their self-care were 
found to have improved HbA

1c [33].

AI and diabetes complications

AI and diabetic retinopathy

Preventing vision loss in persons with diabetes 
requires early detection and treatment of diabet-
ic retinopathy (RD). There are numerous AI-based 
screening technologies available that have excel-
lent sensitivity and specificity.

A  popular system that integrates data from 
several, partially dependent biomarker detectors 
– some of which make use of convolutional neural 
networks – is the IDx-DR system [34, 35]. Previ-
ous iterations of IDx-DR were examined as a com-
ponent of the Iowa Detection Programme (IDP), 
incorporating distinct algorithms to measure 
picture quality and identify abnormal lesions, ex-
udates, cotton wool patches, haemorrhages, and 
neovascularization. In Caucasian, North African, 
and Sub-Saharan groups, IDP has demonstrated 
positive outcomes [36]. By adding DL features, the 
IDX-DR system outperformed the IDP. There was 
a noticeable improvement in specificity – IDX-DR 
was able to achieve 87% specificity for rDR, sig-
nificantly lowering the percentage of false-posi-
tive examinations [34], while the previously excel-
lent sensitivity of IDP (96.8%) remained constant.

The AI algorithm used in EyeArt, a deep learn-
ing-based categorisation tool created by Eyenuk, 
was able to identify both more-than-mild DR and 
vision-threatening DR in 2 prospective trials con-
ducted in the U.K. with over 30,000 patients and 
in the U.S. with 893 patients. According to the 
study’s findings, EyeArt could identify more-than-
mild DR with a sensitivity of 95.5% and a speci-
ficity of 85.0% [37, 38]. With patients from Chi-
na, Hong Kong, Singapore, Mexico, Australia, the 
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United States, and Zambia, among other ethnic 
groups, SELENA was retrospectively validated [39] 
and demonstrated a  sensitivity of 92.25% and 
a  specificity of 89.04% for referable DR, which 
was defined as more-than-mild DR. Among the 
first deep learning-based screening AI algorithms 
was a system that Google created and called DR 
detection. It was assessed using data from the 
EyePACS and Messidor-2 data sets as well as data 
from a national DR screening program in Thailand. 
It was trained using a mixed data set from sever-
al sites in the U.S. and India [40–42]. For DR that 
posed a threat to vision, the algorithm’s sensitiv-
ity was 91.4%, and its specificity was 95.4%. In-
terviewees did admit, though, that the extra steps 
needed to upload photographs could make using 
the algorithm difficult at times. Furthermore, cer-
tain photos would be considered ungradable by 
the system, necessitating repeated imaging or hu-
man interpretation [43].

An unnamed AI algorithm was created by Li  
et al. [44]. It was first trained using a set of 106,244 
retinal pictures of Indigenous Australians, Cauca-
sian Australians, and Malays. For referable DR, this 
approach has been demonstrated to have a sensi-
tivity of 96.9% and a specificity of 87.7% [45]. One 
of the AI algorithms included in the VoxelCloud 
software suite is VoxelCloud Retina. When it came 
to identifying referable DR – which is defined as 
more than mild DR – the algorithm’s sensitivi-
ty was 83.3% and its specificity was 92.5% [46]. 
A Chinese AI algorithm called the AIDRScreening 
system was prospectively assessed in a group of 
1001 patients from 3 Chinese institutions. For re-
ferable DR, the algorithm’s sensitivity was 86.72% 
and its specificity was 96.09% [47]. 

AI and diabetic foot

The outcomes of using AI-based methods to 
diagnose and evaluate diabetic wounds are quite 
promising. Infrared thermography is the primary 
tool used in computer-aided diagnosis (CAD) to 
identify ulcers in diabetic patients by displaying 
the plantar foot’s temperature distribution. Data 
mining, machine learning, and deep learning pro-
cesses can be employed to examine and evaluate 
the acquired temperature distribution patterns. 
CAD systems have demonstrated efficacy in iden-
tifying areas susceptible to ulcers by means of 
mathematical modelling of the underlying pat-
terns [48–53].

AI has potential use also in wound protection 
and prevention. The correlation and probability of 
several known and unknown risk factors can be 
examined using DL. An artificial neural network 
was employed by Singh et al. [48] in one of the 
first studies to assess T2D patients’ likelihood 
of developing a diabetic foot ulcer (DFU) in rela-

tion to 5 single nucleotide polymorphisms in the 
TLR4 gene. The study involved the enrolment of 
255 T2D patients, 130 of whom did not have DFU 
and 125 of whom did. 83% of the validation set 
(or 25% of the dataset) could be correctly pre-
dicted by the final model as to whether DFU will  
be present or not. Thermograms were utilised in 
2 recent investigations [49, 50] to detect diabetic 
foot abnormalities early on (and maybe estimate 
the risk of DFU). In Khandakar’s work [49], ML al-
gorithms were trained on data from 45 healthy 
controls and 122 diabetic patients. The data in-
cluded each subject’s age, gender, height, weight, 
and thermograms of a pair of feet to identify the 
diabetic and control subjects. Arteaga-Marrero  
et al. [51] utilized a  U-net-based deep learning 
strategy in a different study to segment the sole 
of the foot, which can be used as a thermographic 
tool for foot care procedures. 

AI-based technologies can be used to suggest 
tailored treatment plans for diabetic wounds be-
cause they vary in condition, severity, covariates, 
and linked factors. An additional crucial aspect 
that computer scientists tackle is the optimal de-
sign of shoes for individuals with diabetes. For 
these patients, computer-assisted shoe moulds 
have been created [52, 53]. Because the structure, 
form, and design of the human foot vary great-
ly, custom shoe insoles are necessary. Computer 
systems with AI capabilities can personalise these 
insoles.

Conclusions

AI seeks to provide sophisticated and accurate 
predictions for a vast quantity of knowledge data. 
AI-based medical devices are currently available 
in other countries and have already received FDA 
approval for the diagnosis and treatment of dia-
betes. Currently, ML is being utilised in numerous 
studies to control diabetes and its consequences 
as well as to anticipate when diabetes would de-
velop. By utilising vast amounts of organised data 
and plentiful computational resources, ongoing 
machine learning research and efforts toward 
practical application will optimise AI’s predictive 
performance and significantly raise the predictive 
accuracy of diabetes diagnosis, prevention, and 
treatment.

Funding

No external funding.

Ethical approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.



Diabetes management in the era of artificial intelligence

Arch Med Sci Atheroscler Dis 2024 e127

R e f e r e n c e s
1. Hruby A, Hu FB. The epidemiology of obesity: a big pic-

ture. Pharmacoeconomics 2015; 33: 673-89. 
2. Jia W. Diabetes care in China: innovations and implica-

tions. J. Diabetes Investig 2002; 13: 1795-7. 
3. The Prevention of Diabetes Mellitus. JAMA 2021; 325: 

190. 
4. ElSayed NA, Aleppo G, Aroda VR, et al. Facilitating posi-

tive health behaviors and well-being to improve health 
outcomes: standards of care in diabetes-2023. Diabetes 
Care 2023; 46: S68-96. 

5. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in 
healthcare: past, present and future. Stroke Vasc Neurol 
2017; 2: 230-43. 

6. Tran KA, Kondrashova O, Bradley A, Williams ED, Pear-
son JV, Waddell N. Deep learning in cancer diagnosis, 
prognosis and treatment selection. Genome Med 2021; 
13: 152. 

7. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 
2015; 521: 436-44. 

8. Ashrafzadeh S, Hamdy O. Patient-driven diabetes care 
of the future in the technology era. Cell Metabol 2019; 
29: 564-75. 

9. Ramos JMA, Perdomo O, Gonzalez FA. Deep semi-super-
vised and self-supervised learning for diabetic retinopa-
thy detection. 2022 Preprint at arXiv. 

10. Deo RC. Machine learning in medicine. Circulation 2015; 
132: 1920-30. 

11. Yu KH, Snyder M. Omics profiling in precision oncology. 
Mol Cell Proteomics 2016; 15: 2525-36. 

12. Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups 
of adult-onset diabetes and their association with out-
comes: a  data-driven cluster analysis of six variables. 
Lancet Diabetes Endocrinol 2018; 6: 361-9. 

13. Zou X, Zhou X, Zhu Z, Ji L. Novel subgroups of patients 
with adult-onset diabetes in Chinese and US popula-
tions. Lancet Diabetes Endocrinol 2019; 7: 9-11. 

14. van Engelen JE, Hoos HH. A survey on semi-supervised 
learning. Mach Learn 2020; 109: 373-440. 

15. Coronato A, Naeem M, De Pietro G, Paragliola G. Rein-
forcement learning for intelligent healthcare applica-
tions: a survey. Artif Intell Med 2020; 109: 101964. 

16. Gottesman O, Johansson F, Komorowski M, et al. Guide-
lines for reinforcement learning in healthcare. Nat Med 
2019; 25: 16-8. 

17. Samuel AL. Some studies in machine learning using the 
game of checkers. IBM J 1967; 601-7. 

18. Deberneh HM, Kim I. Prediction of type 2 diabetes 
based on machine learning algorithm. Int J Environ Res 
Public Health 2021; 18: 3317. 

19. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driv-
en approach to predicting diabetes and cardiovascular 
disease with machine learning. BMC Med Inform Decis 
Mak 2019; 19: 211. 

20. Zueger T, Schallmoser S, Kraus M, Saar-sechansky M, 
Feuer Riegel S, Stettler C. Machine learning for predict-
ing the risk of transition from prediabetes to diabetes. 
Diabetes Technol Ther 2022; 24: 842-7. 

21. Baig MM, Hosseini HG, Ullah JGE, Lindén M. Early detec-
tion of prediabetes and T2DM using wearable sensors 
and internet-of-things-based monitoring applications. 
Appl Clin Inform 2021; 12: 1-9. 

22. Zee B, Lee J, Lai M, et al. Digital solution for detection 
of undiagnosed diabetes using machine learning-based 
retinal image analysis. BMJ Open Diabetes Res Care 
2022; 10: e002914. 

23. Li J, Yuan P, Hu X, et al. A  tongue features fusion ap-
proach to predicting prediabetes and diabetes with ma-
chine learning. J Biomed Inform 2021; 115: 03693. 

24. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal 
multi-omics of host-microbe dynamics in prediabetes. 
Nature 2019; 569: 663-71. 

25. Samadi S, Rashid M, Turksoy K, et al. Automatic detec-
tion and estimation of unannounced meals for multi-
variable artificial pancreas system. Diabetes Technol 
Ther 2018; 20: 235-46. 

26. Nimri R, Oron T, Muller I, et al. Adjustment of insulin 
pump settings in type 1 diabetes management: advisor 
pro device compared to physicians’ recommendations.  
J Diabetes Sci Technol 2022; 16: 364-72. 

27. Abraham SB, Arunachalam S, Zhong A, Agrawal P, Co- 
hen O, McMahon CM. Improved real-world glycemic 
control with continuous glucose monitoring system pre-
dictive alerts. J Diabetes Sci Technol 2021; 15: 91-7. 

28. Rollo ME, Aguiar EJ, Williams RL, et al. eHealth technolo-
gies to support nutrition and physical activity behaviors 
in diabetes self-management. Metab Syndr Obes 2016; 
9: 381-90. 

29. Shah VN, Garg SK. Managing diabetes in the digital age. 
Clin Diabetes Endocrinol 2015; 1: 16. 

30. Patel MS, Asch DA, Volpp KG. Wearable devices as fa-
cilitators, not drivers, of health behavior change. JAMA 
2015; 313: 459-60. 

31. Frøisland DH, Årsand E. Integrating visual dietary doc-
umentation in mobilephone-based self-management 
application for adolescents with type 1 diabetes. J Dia-
betes Sci Technol 2015; 9: 541-8. 

32. Berman MA, Guthrie NL, Edwards KL, et al. Change in 
glycemic control with use of a  digital therapeutic in 
adults with type 2 diabetes: cohort study. JMIR Diabetes 
2018; 3: e4. 

33. Osborn CY, van Ginkel JR, Rodbard D, et al. One drop | 
mobile: an evaluation of hemoglobin A1c improvement 
linked to app engagement. JMIR Diabetes 2017; 2: e21. 

34. Abràmoff MD, Lou Y, Erginay A, et al. Improved auto-
mated detection of diabetic retinopathy on a  publicly 
available dataset through integration of deep learning. 
Invest Ophthalmol Vis Sci 2016; 57: 5200-6. 

35. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal 
trial of an autonomous AI-based diagnostic system for 
detection of diabetic retinopathy in primary care offices. 
NPJ Digit Med 2018; 1: 39. 

36. Abràmoff MD, Folk JC, Han DP, et al. Automated analy-
sis of retinal images for detection of referable diabetic 
retinopathy. JAMA Ophthalmol 2013; 131: 351-7. 

37. Heydon P, Egan C, Bolter L, et al. Prospective evaluation 
of an artificial intelligence-enabled algorithm for au-
tomated diabetic retinopathy screening of 30 000 pa-
tients. Br J Ophthalmol 2021; 105: 723-8. 

38. Ipp E, Liljenquist D, Bode B, et al.; EyeArt Study Group. 
Pivotal evaluation of an artificial intelligence system for 
autonomous detection of referrable and vision-threat-
ening diabetic retinopathy. JAMA Netw Open 2021; 4: 
e2134254. 

39. Ting DSW, Cheung CYL, Lim G, et al. Development and 
validation of a deep learning system for diabetic retin-
opathy and related eye diseases using retinal images 
from multiethnic populations with diabetes. JAMA 2017; 
318: 2211-23.

40. Bellemo V, Lim ZW, Lim G, et al. Artificial intelligence 
using deep learning to screen for referable and vi-
sion-threatening diabetic retinopathy in Africa: a clinical 
validation study. Lancet Digit Health 2019; 1: e35-44. 

https://pubmed.ncbi.nlm.nih.gov/?term=Deberneh+HM&cauthor_id=33806973
https://pubmed.ncbi.nlm.nih.gov/?term=Kim+I&cauthor_id=33806973
https://pubmed.ncbi.nlm.nih.gov/?term=Dinh+A&cauthor_id=31694707
https://pubmed.ncbi.nlm.nih.gov/?term=Miertschin+S&cauthor_id=31694707
https://pubmed.ncbi.nlm.nih.gov/?term=Young+A&cauthor_id=31694707
https://pubmed.ncbi.nlm.nih.gov/?term=Mohanty+SD&cauthor_id=31694707


Athanasia K. Papazafiropoulou

e128 Arch Med Sci Atheroscler Dis 2024

41. Gulshan V, Peng L, Coram M, et al. Development and 
validation of a  deep learning algorithm for detection 
of diabetic retinopathy in retinal fundus photographs. 
JAMA 2016; 316: 2402-10. 

42. Raumviboonsuk P, Krause J, Chotcomwongse P, et al. 
Deep learning versus human graders for classifying di-
abetic retinopathy severity in a  nationwide screening 
program. NPJ Digit Med 2019; 2: 25. 

43. Ruamviboonsuk P, Tiwari R, Sayres R, et al. Real-time 
diabetic retinopathy screening by deep learning in 
a  multisite national screening programme: a  prospec-
tive interventional cohort study. Lancet Digit Health 
2022; 4: e235-44. 

44. Li Z, Keel S, Liu C, et al. An automated grading system 
for detection of vision-threatening referable diabetic 
retinopathy on the basis of color fundus photographs. 
Diabetes Care 2018; 41: 2509-16. 

45. Public Health England. NHS Diabetic Eye Screen-
ing Programme: grading definitions for referable 
disease. Accessed 14 April 2023. Available from 
https://www.gov.uk/government/publications/dia-
betic-eye-screening-retinal-image-grading-criteria/
nhs-diabetic-eye-screening-programme-grading-defini-
tions-for-referable-disease

46. Zhang Y, Shi J, Peng Y, et al. Artificial intelligence-ena-
bled screening for diabetic retinopathy: a  real-world, 
multicenter and prospective study. BMJ Open Diabetes 
Res Care 2020; 8: e001596. 

47. Yang Y, Pan J, Yuan M, et al. Performance of the 
AIDRScreening system in detecting diabetic retinopathy 
in the fundus photographs of Chinese patients: a pro-
spective, multicenter, clinical study. Ann Transl Med 
2022; 10: 1088. 

48. Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K. As-
sociation of Toll-like receptor 4 polymorphisms with 
diabetic foot ulcers and application of artificial neural 
network in DFU risk assessment in type 2 diabetes pa-
tients. Biomed Res Int 2013; 2013: 318686. 

49. Khandakar A, Chowdhury MEH, Reaz MBI, et al. A novel 
machine learning approach for severity classification of 
diabetic foot complications using thermogram images. 
Sensors (Basel) 2022; 22: 4249.

50. Cruz-Vega I, Hernandez-Contreras D, Peregrina-Barre- 
to H, Rangel-Magdaleno JJ, Ramirez-Cortes JM. Deep 
learning classification for diabetic foot thermograms. 
Sensors (Basel) 2020; 20: 1762.

51. Arteaga-Marrero N, Hernández A, Villa E, González-Pé- 
rez S, Luque C, Ruiz-Alzola J. Segmentation approaches 
for diabetic foot disorders. Sensors (Basel) 2021; 21: 
934.

52. Davia M, Germani M, Mandolini M, Mengoni M, Mon- 
tiel E, Raffaeli R. Shoes customization design tools for 
the “diabetic foot”. CADA 2011; 8: 693-711. 

53. Zequera M, Stephan S, Paul J. Effectiveness of moulded 
insoles in reducing plantar pressure in diabetic patients. 
Annu Int Conf IEEE Eng Med Biol Soc 2007; 2007: 4671-4. 


	28h4qwu
	nmf14n
	37m2jsg
	1mrcu09
	111kx3o
	2lwamvv
	46r0co2
	206ipza
	3l18frh
	4k668n3
	3ygebqi
	2zbgiuw
	1egqt2p

